Policies & Procedures

- Total of 18 hours (six courses in sections II. – V. below) must be completed with a grade of C- or higher.
- No transfer credit or credit-by-exam may be used to fulfill certificate course requirements (except for prerequisite).
- Not all courses listed in this document are offered every semester. See UT course schedule for available class offerings.
- See SDS website for information on how to enroll and for more details about course and research project requirements: stat.utexas.edu/undergraduate/certificate-in-scientific-computation

I. Prerequisite Knowledge (Choose One)

Mathematics: 408D Differential & Integral Calculus, 408M Multivariable Calculus

II. Core Requirements

A. Computer Programming (Choose One)

Aerospace Engineering: 301 Intro to Computer Programming

Biomedical Engineering: 303 Intro to Computing

Computer Science: 313E Elements of Software Design

Electrical Engineering: 312 Software Design & Implementation

Geological Sciences: 325J Programming in FORTRAN & MATLAB

Statistics & Data Sciences: 322 Intro to Scientific Programming

B. Mathematics (Choose One)

Statistics & Data Sciences: 329C Practical Linear Algebra I

III. Scientific Computing Courses

(Choose Two Categories & Take One Course in Each)

A. Numerical Methods

Aerospace Engineering: 211K Engineering Computation

Civil Engineering: 379K Computer Methods for Civil Eng

Chemical Engineering: 348 Numerical Methods in Chemical Engineering

Mathematics: 348 Scientific Computation in Numerical Analysis, 368K Numerical Methods for Applications

Statistics & Data Sciences: 335 Scientific & Technical Computing

B. Statistical Methods

Biomedical Engineering: 335 Engineering, Probability, & Statistics

Economics: 329 Economic Statistics

Electrical Engineering: 351K Probability & Random Processes

Mechanical Engineering: 335 Engineering Statistics

Statistics & Data Sciences: 325H Honor Statistics, 320E Elements of Statistics, 328M Biostatistics

C. Other Computing Topics

Computer Science: 324E Elements of Graphics & Visualization, 327E Elements of Databases, 329E Topics in Elements of Computing*, 377 Principles & Applications of Parallel Programming

Mechanical Engineering: 367S Simulation Modeling

Management Information Systems: 325 Database Management

Neuroscience: 366M Quantitative Methods

Statistics & Data Sciences: 329D Practical Linear Algebra II, 374C Parallel Computing, 374D Distributed & Grid Computing for Sci. & Engineers, 374E Visualization & Data Analysis

*Topics courses must be approved by the faculty committee. See SDS website for details on approval process.

Continued on next page ...
IV. APPLIED COMPUTING COURSES

(choose one)

Aerospace Engineering: 347 Intro to Computational Fluid Dynamics

Biology: 321G Intro to Computational Bio, 377J Computational Biology Lab

Computer Science: 329E Topics in Elements of Computing*

Chemistry: 368 Advanced Topics in Chemistry

Biomedical Engineering: 341 Engineering Tools for Computational Genomics Lab, 342 Computational Biomechanics, 346 Computational Structural Biology, 377T Topics in Biomedical Engineering*

Economics: 363C Computational Economics

Electrical Engineering: 361M Introduction to Data Mining

Finance/Statistics (IROM): 372.6/372 Optimization Methods in Finance

Geological Sciences: 325K Computational Methods in Geological Sciences

Mathematics: 375T Topics in Mathematics*, 374M Mathematical Modeling in Science & Engineering

Physics: 329 Introduction to Computational Physics

Statistics & Data Sciences: 322E Elements of Data Science, 348 Computation Biology & Bioinformatics

V. RESEARCH PROJECT

(one course to reach 18 total hours for certificate)

Statistics & Data Sciences: 379R, 479R Undergraduate Research

Work with a faculty supervisor on an original research project that is presented in a research paper. Topics must be approved by SDS Faculty Committee prior to enrollment. Students are responsible for finding their own faculty supervisor. See our website for more information.

Topics courses must be approved by the faculty committee. See SDS website for details on approval process.