ORI 390R.8 - Queueing Theory - Fall 2010

Unique 19010

• **Time & Place:** Tue & Thurs 11:00am-12:30pm, ETC 7.111

• **Professor:** John J. Hasenbein
 - **Office:** ETC 5.128B
 - **Phone:** 471-3079
 - **Email:** jhas@mail.utexas.edu (This is the best way to contact me.)
 - **Office Hours:** Mondays, 10:30am–12noon. You can also email me for an appointment.

• **Class Web Page:** We will be using the *Blackboard* system, which is accessible through UT Direct. All class materials will be available via this system.

• **Suggested Text:**

 Other texts that will be useful during the class are listed below. Some of these will be on reserve at the PMA library.

 1. *Fundamentals of Queueing Networks* by Hong Chen and David Yao (Springer 2001). On reserve in PMA.
 4. *To Queue or Not to Queue* by Refael Hassin and Moshe Haviv (Kluwer 2003).
 See http://www.statslab.cam.ac.uk/~frank/ for an online version of the book.
 8. *Stability of Fluid and Stochastic Processing Networks* by Jim Dai. An electronic copy of the notes will be posted on *Blackboard*.
 9. *Stochastic Networks* by Sunil Kumar. An electronic preprint, not for distribution, will be posted on *Blackboard*.

• **Grading:** Problem sets will be assigned roughly every two weeks. Your class grade will be based on your homework average (45%), a class project (35%) and class participation (20%). Generally, I will use the class participation component to boost your overall average, if you come to class and occasionally participate in class discussion.
For the problem sets, you may discuss problems with your classmates and in fact are encouraged to do so. However, you should understand and write-up your own solutions. A good rule of thumb is that you should be able to explain to me the solutions you have submitted.

- **Prerequisites:** For this course, you should have a good knowledge of Poisson processes and discrete and continuous-time Markov chains. It is highly recommended that you have taken a course equivalent to ORI 390R.5 - *Applied Stochastic Processes*. I will assume that you are thoroughly familiar with all the topics in covered in that class.

- **Email Communication:** For this class, email will be used as an official form of communication for notifying you of new homework assignments and other class updates. The University of Texas email policy can be found at http://www.utexas.edu/its/policies/emailnotify.html.

- **Students with disabilities:** The University of Texas at Austin provides, upon request, appropriate academic adjustments for qualified students with disabilities.

- **Course Evaluation:** Near the end of the course you will have an opportunity to anonymously evaluate the course and instructor using the standard evaluation form.

Course Topics

Queueing theory is the study of stochastic processing systems, whose primary elements are “servers” and “customers.” Customer arrival times and service times are assumed to possess some randomness and we use utilize a variety of methods from the theory of stochastic processes to analyze these systems. Applications of the theory are wide-ranging, including manufacturing, telecommunications, computer networks and servers, Internet traffic, inventory, and insurance/risk theory.

The course will be roughly divided into two major parts. In the first part we will discuss “classical” queueing theory, which generally involves one server systems or networks (many-server systems) with somewhat restrictive probabilistic assumptions, i.e. exponential service and inter-arrival times. In the second part, we will study a sample of topics from the modern theory of stochastic processing networks, developed mostly in the last 20 years. This theory attempts to address non-Markovian models, multiclass systems, and scheduling methods. The modern theory is quite powerful and the subject of intense research in the field.

Additional References

- **Stochastic Processes**
Course Topics & Suggested Readings

I. General Laws and Analysis of Single Station Systems
 - Intro to queueing theory, nomenclature (GH: 1.1–1.4)
 - Rate stability, Little’s Law, and ASTA principles (ET and S, various).
 - Birth and death queueing models, M/M/1, M/M/1/K, M/M/c, M/M/∞ (GH, see section headings)
 - Game theoretic queues, Naor’s model, unobservable queues (HH: 2.1–2.3, 3.1 and 3.2)
 - Optimizing simple queueing systems (Stidham, Chapter 1)
 - Erlang models and generating functions (Wolff: 5.12)
 - The M/G/∞ queue (Wolff: 2.6), M/G/1 and GI/M/1 queues (GH: 5.1 and 5.3)
 - The GI/G/1 queue, Kingman’s upper bound and lower bounds (Wolff: 11.1 and 11.2)
 - Introduction to Heavy Traffic Approximations: Many-server Asymptotics
 (Kumar, Chapter 1, through Section 1.4)
 - Review of the M/M/s queue
 - Heavy Traffic Asymptotics
 - Convergence of Distributions
 - Scheduling rules for single server networks (Wolff: 5.14)

II. Classical Stochastic Networks
 - Tandem and feedforward networks
 - Open and closed Jackson networks (CY: 2.1 and 2.2)
 - Reversibility (CY: 1.2 and 4.1, Kelly)

III. Stochastic Networks
 A. Open Multiclass Queueing Networks
 - Open multiclass queueing networks (Dai: 1.2)
 - Service disciplines and dispatch rules (Dai: 1.2)
 - The functional SLLN, the 1D reflection map, and fluid limits (CY: 5.4, 6.1–6.3)
 - Traffic equations (Dai: 1.4)
 - Fluid networks (Dai: 2.2 and 2.3)
 B. Stability and Throughput Optimality
 - Stability results: Dai’s Theorem and Chen’s Theorem, converse results, Bramson’s Lemma
 (Dai: 2.6)
 - Fluid and Queueing Dynamics (Dai: 1.5 and 2.2)
 - Lyapunov functions, global stability, and throughput optimality (Dai: 2.4)
 - Leaky bucket regulators (Dai: 2.9)
 C. Further Topics in Stochastic and Fluid Networks
 - Networks with setups, batching, Harrison’s framework
 - Fluid model optimization: makespan and holding cost