Course Description: (A brief description of the course content to be covered.)
This course will teach you a practical approach to modeling and forecasting time series data. The goal of modeling is to explain and to predict: to account for why a phenomenon varies over time and to predict its future. The course focus is on empirical modeling, rather than theoretical properties. You will learn how to propose models, estimate them with data, diagnose whether they fit, and interpret their meanings. Models covered include random samples, random walks, regression, autoregression, moving averages, and related structures. Computer demonstrations with both real and simulated data will be used extensively.

Day 1:
(Brief daily outline or expectations.)
Introduction to time series modeling
Examples of time series data
Objectives:
 Explanation
 Forecasting
The random sample as the basic time series model
Estimating and forecasting a random sample
Finding random samples in real data
A general approach to modeling
 Actual = Fit + Residual
 Propose model
 Estimate model
 Verify model
 Use model
Why it matters to have a correct model
 Bias
 Margin of error

Day 2:
(Brief daily outline or expectations.)
Computer software
 SAS and Excel
The random walk
 Definition
 Verification
 Forecasting
 Implications
Finding random walks in real data

Autoregression
 Definition
 Verification
 Forecasting

Durbin-Watson statistic

Autocorrelation function

Partial autocorrelation function

Finding autoregressions in real data

Day 3:
(Brief daily outline or expectations.)
Experiences with modeling real univariate time series
A layered approach to time series features:
 Trends
 Seasons and cycles
 Autocorrelation
 Heteroscedasticity

Day 4:
(Brief daily outline or expectations.)
Multivariate time series modeling
Other topics (as time permits)
 Moving averages
 ARIMA
 Panel data