SDS Seminar Series – Dr. Bodhisattva Sen
Apr
26
2024

Apr
26
2024
Description
The Spring 2024 SDS Seminar Series continues on April 26th from 2:00 p.m. to 3:00 p.m. with Dr. Bodhisattva Sen (Statistics, Columbia University). This event is in-person.
Title: Extending the Scope of Nonparametric Empirical Bayes
Abstract: In this talk we will describe two applications of empirical Bayes (EB) methodology. EB procedures estimate the prior probability distribution in a latent variable model or Bayesian model from the data. In the first part we study the (Gaussian) signal plus noise model with multivariate, heteroscedastic errors. This model arises in many large-scale denoising problems (e.g., in astronomy). We consider the nonparametric maximum likelihood estimator (NPMLE) in this setting. We study the characterization, uniqueness, and computation of the NPMLE which estimates the unknown (arbitrary) prior by solving an infinite-dimensional convex optimization problem. The EB posterior means based on the NPMLE have low regret, meaning they closely target the oracle posterior means one would compute with the true prior in hand. We demonstrate the adaptive and near-optimal properties of the NPMLE for density estimation, denoising and deconvolution.
In the second half of the talk, we consider the problem of Bayesian high dimensional regression where the regression coefficients are drawn i.i.d. from an unknown prior. To estimate this prior distribution, we propose and study a "variational empirical Bayes" approach — it combines EB inference with a variational approximation (VA). The idea is to approximate the intractable marginal log-likelihood of the response vector --- also known as the "evidence" --- by the evidence lower bound (ELBO) obtained from a naive mean field (NMF) approximation. We then maximize this lower bound over a suitable class of prior distributions in a computationally feasible way. We show that the marginal log-likelihood function can be (uniformly) approximated by its mean field counterpart. More importantly, under suitable conditions, we establish that this strategy leads to consistent approximation of the true posterior and provides asymptotically valid posterior inference for the regression coefficients.
Location
Peter O’Donnell Jr. Building (POB) 2.302
Share
Other Events in This Series
Oct
11
2024
SDS Seminar Series – Mingyuan Zhou, University of Texas at Austin
Building Faster, Better, and Safer Deep Generative Models via Score Identity Distillation
2:00 pm – 3:00 pm • In Person
Speaker(s): Mingyuan Zhou
Oct
18
2024
SDS Seminar Series – Sherry Zhang, University of Texas at Austin
Pivoting between Space and Time: Spatio-Temporal Analysis with Cubble
2:00 pm – 3:00 pm • In Person
Speaker(s): Sherry Zhang
Oct
25
2024
SDS Seminar Series – Matt Koslovsky, Colorado State University
Sparse Dirichlet-Multinomial Models
2:00 pm – 3:00 pm • In Person
Speaker(s): Matt Koslovsky
Nov
1
2024
SDS Seminar Series – Aaditya Ramdas, Carnegie Mellon University
A Game-Theoretic Theory of Statistical Evidence
2:00 pm – 3:00 pm • In Person
Speaker(s): Aaditya Ramdas
Nov
8
2024
SDS Seminar Series – Myungsoo Yoo, University of Texas at Austin
Dynamic Spatio-Temporal Model Integrating Physics for Fire Front Propagation
2:00 pm – 3:00 pm • In Person
Speaker(s): Myungsoo Yoo
Nov
15
2024
SDS Seminar Series – Rafael Irizarry, Harvard University
Twenty-Five Years of Data Science: Music, Genomics, and Public Health Surveillance
2:00 pm – 3:00 pm • In Person
Speaker(s): Rafael Irizarry
Mar
7
2025
SDS Seminar Series - Arun Kuchibhotla, Carnegie Mellon University
Adaptive Inference Techniques for Some Irregular Problems
2:00 pm – 3:00 pm • In Person
Speaker(s): Arun Kuchibhotla
Mar
28
2025
SDS Seminar Series – Po-Ling Loh, University of Cambridge
Differentially Private M-estimation via Noisy Optimization
2:00 pm – 3:00 pm • In Person
Speaker(s): Po-Ling Loh
Apr
18
2025
SDS Seminar Series – Richard Samworth, University of Cambridge
How Should We Do Linear Regression?
2:00 pm – 3:00 pm • In Person
Speaker(s): Richard Samworth